
A Real-to-Sim-to-Real Approach to Robotic Manipulation
with VLM-Generated Iterative Keypoint Rewards

Shivansh Patel1∗, Xinchen Yin1∗, Wenlong Huang2, Shubham Garg3, Hooshang Nayyeri3,
Li Fei-Fei2, Svetlana Lazebnik1, Yunzhu Li4

Abstract— Task specification for robotic manipulation in
open-world environments is challenging. Importantly, this pro-
cess requires flexible and adaptive objectives that align with
human intentions and can evolve through iterative feedback.
We introduce Iterative Keypoint Reward (IKER), a visually
grounded, Python-based reward function that serves as a
dynamic task specification. Our framework leverages VLMs
to generate and refine these reward functions for multi-step
manipulation tasks. Given RGB-D observations and free-form
language instructions, we sample keypoints in the scene and
generate IKER conditioned on these keypoints. It operates on
the spatial relationships between keypoints, enabling precise
SE(3) control and leveraging VLMs as proxies to encode human
priors about robotic behaviors. We reconstruct real-world
scenes in simulation and use the generated rewards to train RL
policies, which are then deployed into the real world—forming
a real-to-sim-to-real loop. Our approach demonstrates notable
capabilities across diverse scenarios, including both prehensile
and non-prehensile tasks, showcasing multi-step task execution,
spontaneous error recovery, and on-the-fly strategy adjust-
ments. The results highlight IKER’s effectiveness in enabling
robots to perform multi-step tasks in dynamic environments
through iterative reward shaping. Project Page: https://
iker-robot.github.io/

I. INTRODUCTION

Figure 3 illustrates a robot tasked with placing a pair of
shoes on a rack, but a shoe box is occupying the rack, leaving
insufficient space for both shoes. The robot cannot perform
the requested action immediately. It must first push the box
aside to create space and then proceed to place the shoes.
This example highlights the importance of task specification
for robots in unstructured, real-world environments, where
tasks often involve multiple implicit steps. In such cases,
rigid, predefined instructions fail to capture the complexities
of interaction required to accomplish the goal. Crucially, task
specifications must incorporate human priors—expectations
about how the robot should behave. For instance, rather than
attempting to squeeze the shoes in awkwardly, the robot
should first clear space.

Recent advancements in vision-language models (VLMs)
have demonstrated their ability to encode rich world knowl-
edge by pretraining on vast and diverse datasets [1–8].
This capability makes them particularly promising for task
specification in robotic systems operating in unstructured,
real-world environments, where tasks often involve multiple
implicit steps. VLMs excel in processing free-form language
descriptions, allowing them to interpret complex task in-
structions expressed in natural language. Their broad world

*indicates equal contribution. 1University of Illinois at Urbana-
Champaign, 2Stanford University, 3Amazon, 4Columbia University

Multi-Step Skill Chaining

Diverse Task
Specification

Multi-Step With
Environment Feedback

Regrasp

Book Place

Book Push Disturbance RecoveryShoe Push

Shoe Place

Book ReorientShoe Reorient

Fig. 1: Capabilities of Our Framework. Our framework is
designed to handle a wide range of real-world tasks. It can
be seamlessly chained to execute multi-step tasks. It exhibits
notable capabilities, including robustness to disturbances and
the ability to solve problems creatively.

knowledge helps bridge the gap between human expectations
and robot behavior, capturing human-like behavioral pri-
ors and strategies for problem-solving. However, leveraging
VLMs for robotic control presents two technical challenges:
1) Fine-grained SE(3) pose control, requiring precise ma-
nipulation of objects in 3D space; 2) Iterative decision-
making, where VLMs refine their predictions through em-
bodied feedback—the environment changes as a result of
the robot’s actions.

In this work, we introduce Iterative Keypoint Re-
ward (IKER), a visually grounded reward function for
robotic manipulation that addresses these challenges. IKER
leverages keypoints to define reward functions based on their
spatial relationships, enabling precise control over object
poses in SE(3) space. Inspired by recent work [9], we
draw the observation that we can encode both positions
and orientations of the objects using keypoints. Hence,
IKER allows for fine-grained manipulation in 3D, facilitating
complex tasks that require accurate location and orientation
control. Additionally, IKER incorporates an iterative refine-
ment mechanism, where VLMs continuously update task
specifications based on embodied feedback from the robot’s
interactions with the environment. This iterative process
encodes human-like behavioral priors into the robot’s actions,
ensuring that it refines its behavior dynamically—adjusting

https://iker-robot.github.io/
https://iker-robot.github.io/

strategies and adopting intermediate steps, such as reposi-
tioning objects for a better grasp.

To ensure scalable and robust policy training, we employ a
real-to-sim-to-real transfer. While VLMs excel in processing
real-world visual data, training policies directly in the real
world is often infeasible due to safety, scalability, and
efficiency constraints. To address this, we first generate IKER
using real-world observations, grounding the task specifi-
cations in the actual environment. These rewards are then
transferred to simulation for training. Finally, the optimized
policies are deployed back into the real world, ensuring that
the robot’s behavior is both grounded in real-world data and
robustly trained in simulation.

Leveraging this framework, we demonstrate the efficacy
of IKER across diverse scenarios involving real-world ob-
jects like shoes and books. These scenarios include both
prehensile tasks, such as grasping and placing shoes on
racks, and non-prehensile tasks, like pushing or sliding
books to target locations. We conduct both quantitative
and qualitative evaluations to assess the system’s ability
to perform complex, long-horizon tasks autonomously. The
results showcase human-like capabilities, including multi-
step action sequencing, spontaneous error recovery, and the
ability to update strategies in response to changes in the
environment.

In summary, our contributions are as follows:
• We introduce a visually grounded reward representation

IKER, that serves as flexible task specification, enabling
robots to tackle complex open-world tasks.

• We demonstrate that IKER possesses the unique advan-
tage of incorporating human-like behavioral priors and
an iterative reward shaping process.

• We integrate IKER with a real-to-sim-to-real framework
to perform both prehensile and non-prehensile tasks,
which is robust in challenging long-horizon tasks.

II. RELATED WORK

VLMs in Robotics. VLMs have appeared as a prominent
tool in robotics [10–23]. Existing works utilizing VLMs
in robotics primarily focus on two areas: task specifica-
tion [10–12, 15, 16, 21] and low-level control [11, 13, 14, 24].
Our work aligns with the former, with an emphasis on
flexible and adaptable task specifications in complex, real-
world environments.

For task specification, many works employ VLMs to
break down complex tasks into manageable subtasks. Ahn
et al. [10] use VLMs to parse long-horizon tasks and de-
compose them into sequential steps executable by the robots.
Belkhale et al. [25] introduce language motions that serve
as intermediaries between high-level instructions and specific
robotic actions, allowing policies to capture reusable, low-
level behaviors. Unlike these works, our approach focuses on
enhancing adaptability in open-world scenarios by dynami-
cally interpreting tasks without relying on fixed assumptions
about the environment. This flexibility enables more robust
handling of diverse and complex tasks in the real-world.

Beyond task decomposition, VLMs have been used to gen-
erate affordances and value maps that guide robotic actions.
Huang et al. [12] employs VLMs to generate 3D affordance
maps, providing robots with spatial knowledge of which parts
of the environment are suitable for interaction. Liu et al. [15]
use VLMs to predict point-based affordances, enabling zero-
shot manipulation tasks. Zhao et al. [26] incorporate VLMs
into model predictive control, where the models predict the
outcomes of candidate actions to guide optimal decision-
making. These works demonstrate the potential of VLMs
to bridge high-level task understanding with spatial and
functional knowledge needed for robotic control. Similar to
our work, Huang et al. [9] use keypoints and define relations
and constraints between them to execute manipulation tasks,
but their approach follows an open-loop strategy. In contrast,
we employ a closed-loop approach, enabling dynamic plan
adjustments, ensuring adaptability throughout the task execu-
tion. Additionally, our approach also supports non-prehensile
manipulations, such as pushing.

Some works have also explored using VLMs to specify
task objectives through reward function generation. Works
such as [27–30] employ LLMs to generate reward functions
that train policies. However, most of these approaches have
limitations for real-world applicability. Some lack demon-
strations on real robots [28], or are restricted to a single
real-world scenario [30], or focus on highly constrained tasks
like a robot dog walking on a ball [29]. In contrast, our
work demonstrates the versatility and robustness of VLM-
generated rewards by tackling diverse and challenging real-
world manipulation tasks, highlighting the effectiveness of
our approach in multi-step, complex environments.

Real-Sim-Real. Real-to-sim has gained significant attention
for its ability to facilitate efficient agent training. Once a
scene is transferred to simulation, it can be used for a wide
range of tasks, including RL training. Several approaches fo-
cus on reconstructing rigid bodies for use in simulation [31–
33]. For instance, Kappler et al. [31] introduced a method
for reconstructing rigid objects to facilitate grasping. Some
works rather focus on reconstructing articulated objects [34–
38]. Huang et al.[34] presented methods for reconstructing
the occluded shapes of articulated objects. Jiang et al. [38]
introduced a framework, DITTO, to generate digital twins of
articulated objects from real-world interactions. In our work,
we utilize BundleSDF [39] to generate object meshes that
are transferred to the simulation. We use it because it is fast
and has state-of-the-art performance.

Sim-to-real transfers has shown great performance in a
variety of skills, including tabletop manipulation [40, 41],
mobile manipulation [42, 43], dynamic manipulation [44],
dexterous manipulation [45, 46], and locomotion [47, 48].
However, directly deploying learned policies to physical
robots cannot guarantee successful performance due to sim-
to-real gap. To bridge sim-to-real gap, researchers has devel-
oped many techniques, such as system identification [49–
52], domain adaptation [53–55], and domain randomiza-
tion [47, 56–58]. In our work, we use domain randomization

VLM Generated Iterative
Keypoint Reward

Real2Sim Reconstruction Sim2Real DeploymentRL Training

Fig. 2: Framework Overview. Iterative Keypoint Reward (IKER) is a visually grounded reward generated by Vision-
Language Models (VLMs) as task specification. The framework reconstructs the real-world scene in simulation, and the
generated reward is used to train RL policies which are subsequently deployed in the real-world.

Algorithm 1 IKER Execution Framework
1: Initialize: done ← false, execution history ← []
2: while true do
3: (keypoint locations, keypoints image) ← GetKeypoints()
4: code ← QueryVLM(keypoints image, execution history)
5: (done, final keypoints) ← Execute(code)
6: if done is true then
7: break
8: end if
9: Append (keypoints image, code) to executionHistory

10: si ← TransferSceneToSimulation()
11: πi ← LearnPolicy(si, final keypoints)
12: ExecutePolicyInRealWorld(πi)
13: end while

as it does not require any interaction data from real-world
during training. It relies entirely on simulation and makes
policies robust by exposing them to a wide variety of
randomized conditions within simulation. Recently, Torne et
al. [59] proposed RialTo, a complete real-to-sim-to-real loop
system that focuses on leveraging simulation to robustify
imitation learning policies trained using real-world collected
demonstrations. In contrast, we focus on executing long-
horizon tasks by training only in simulation, bypassing the
need for demonstrations.

III. METHOD

Herein we first formally define Iterative Keypoint Reward
(IKER) and discuss how it is automatically synthesized
and refined by VLMs by continuously taking in environ-
mental feedback. Then, we discuss our overall framework,
which uses IKER in a real-to-sim-to-real loop. Our method
overview is illustrated in Figure 2, with detailed steps pro-
vided in Algorithm 1.

A. Iterative Keypoint Reward (IKER)

Given an RGB-D observation of the environment and an
open-vocabulary language instruction I for a multi-step task,
our goal is to sequentially obtain a set of policies, πN

i=1,
that complete the task. Crucially, the number of policies
N is not predefined, allowing for flexibility in how the
robot approaches the task. In this scenario, the first policy,
π1, moves the shoe box to create space, while subsequent
policies handle the placement of each shoe.

For each step i, we denote the RGB observation as Oi. We
assume a set of K keypoints kKj=1 is given (discussed later in
Sec. III-B), each specifying a 3D position in the task space

𝑡

Place the shoes on the
rack.

Vision
Language

Model
(VLM)

def interaction_data(keypoints):
object_to_interact = ...
grasp_mode = ...
final_keypoint_coordinates =

...
...

Keypoints & execution history

VLM Generated
Reward Function

Fig. 3: Iterative Keypoint Reward Generation. We first
obtain keypoints in the scene. These, combined with a
human command and execution history, are processed by a
Vision-Language Model (VLM) to generate code that maps
keypoints to the reward function.

and marked numerically as 1, . . . ,K in the RGB observation.
Using these keypoints, our objective is to automatically
generate a reward function, termed IKER, that maps the
keypoint positions to a scalar reward f (i) : RK×3 → R.

To generate the reward function f (i), we use a VLM (GPT-
4o [1] in our case), which is provided with the context Ci

defined as:

Ci =
{
I,O1, f

(1), . . . , Oi−1, f
(i−1), Oi

}
.

This context includes:
1) The human instruction I describing the task.
2) The sequence of previous observations and reward func-

tions up to step i− 1, i.e. {O1, f
(1), . . . , Oi−1, f

(i−1)}.
3) The current RGB observation Oi with overlaid key-

points.
Additionally, the VLM is guided by a prompt (discussed

in Sec. B) that instructs to generate a Python function for the
reward f (i). The prompt directs the VLM to break down the
task into executable steps, specify the movement of objects
by indicating where their keypoints should be placed relative
to other keypoints, and perform arithmetic calculations on
these keypoints to predict their final locations. It also in-
structs the VLM to present all outputs in a prescribed code
format and set the flag done = True, signaling that the
task is completed.

Upon receiving the final keypoint locations by executing
the generated code, we compute a scalar reward that evalu-
ates the policy’s performance. The reward function, rtotal, is
designed to facilitate learning by combining several terms:

• Gripper-to-object Distance Reward (rdist): Encourages
the robot to approach the object of interest by penalizing
large distances between them.

• Direction Reward (rdir): Guides the robot to move the
object in the direction of the target location.

• Alignment Reward (ralign): Drives the robot to position
the keypoints close to their target locations.

• Success Bonus (rbonus): Provides an additional reward
when the average distance between the keypoints and
their target positions remains within a specified thresh-
old for a certain number of timesteps, indicating suc-
cessful task completion.

• Penalty Term (rpenalty): Applies penalties for undesirable
actions such as excessive movements, dropping the
object, or applying excessive force.

The total reward function is defined as:

rtotal = αdistrdist + αdirrdir + αalignralign + αbonusrbonus + αpenaltyrpenalty

where αdist, αdir, αalign, αbonus, and αpenalty are weighting
hyperparameters that we set. This reward structure enables
the agent to learn complex manipulation tasks by providing
continuous feedback.

B. Transferring real-world scene to simulation

We transfer the real-world scene within the workspace
boundary to simulation. First, we generate 3D meshes of
manipulable objects, such as the shoe box and shoes shown
in Figure 3, by capturing video footage of each object as
it is moved to ensure the camera captures all sides. These
videos allow for accurate 3D mesh reconstruction using
BundleSDF [39], and multiple objects can be processed in
parallel to speed up the scanning phase. Once a mesh is
created for an object, it can be reused in different settings,
eliminating the need to recreate it for each new scenario.
With the meshes prepared, we use FoundationPose [60] to
estimate the objects’ poses, enabling precise placement of
the corresponding meshes in the simulated environment. For
static elements, like the workspace table and shoe rack in
Figure 3, we capture a point cloud to create their meshes for
use in the simulation.

We leverage the generated meshes to identify candidate
keypoints. For manipulable objects like shoes or books,
keypoints are placed at the object’s extremities along its axes,
defined with respect to the object’s center, independent of the
human instruction. Keypoints that are too close in the image
projection are removed. Conversely, for static objects like
shoe racks, which are part of the environment, keypoints are
uniformly distributed across their surfaces.

C. Train policy in Simulation

We directly control the robot in the end-effector space,
which has six degrees of freedom: three prismatic joints for
movement along the x, y, and z axes, and three revolute
joints for rotation. The gripper fingers remain closed by
default, opening only when grasping objects. In simulation,
we employ a heuristics-based grasp for faster training.

State Space: The state space for our policy captures
the essential information to execute the task. The input is
a vector st consisting of the gripper’s end-effector pose
(pe,qe) ∈ R7, the pose of object currently being manip-
ulated (po,qo) ∈ R7, a set of object keypoints Ko =
{ko1 , . . . ,kon} ∈ R3n, and their corresponding target po-
sitions Kt = {kt1 , . . . ,ktn} ∈ R3n. Kt is derived from
the reward function f generated by the VLM. Rotations
qe and qo are represented as quaternions. This state space
st = (pe,qe,po,qo,Ko,Kt) captures essential information
on objects of interest as well as the goal of the policy.

Action Space: The action space is defined relative to the
gripper’s current position and orientation. The policy outputs
actions at = (∆pe,∆re), where ∆pe ∈ R3 and ∆re ∈ R3

specifies the changes in translation and rotation respectively.
Training Algorithm & Architecture: We train our poli-

cies using IsaacGym [61] simulator with the PPO [62]
algorithm. We use an actor-critic architecture [63] with a
shared backbone. The network is a multi-layer perceptron
(MLP) consisting of hidden layers with 256, 128, and 64
units, each followed by ELU [64] activation. Currently,
it takes about 5 minutes to train per task, which can be
prohibitive for certain applications. However, this training
time can be reduced by increasing the number of parallel
environments and utilizing more powerful GPUs.

Domain Randomization: Recognizing the challenges in-
herent in transferring policies between the simulation and the
real world, we employ domain randomization to bridge the
real-to-sim-to-real gaps. Domain randomization is applied
to object properties like friction, mass, center of mass,
restitution, compliance, and geometry. We further randomize
the object position, the gripper location, as well as the grasp
within a range. We found these to be especially crucial for
non-prehensile tasks like pushing.

D. Deploy Trained Policy in Real-World

The trained RL policy πi is then deployed directly in the
real-world. Since the policy outputs end-effector pose, we
employ inverse kinematics to compute the joint angles at
each timestep. The RL policy operates at 10Hz frequency,
producing action commands that are then clipped to ensure
the end effector remains within the workspace limits. For
keypoint tracking, we utilize FoundationPose [60] to estimate
the object’s pose. These pose estimates are subsequently used
to compute the keypoint locations that are defined relative to
the objects. We use AnyGrasp [65] to detect grasps in the
real-world. The VLM predicts the object to interact with, and
the optimal grasp is selected from AnyGrasp detection using
back and top views of the object.

IV. EXPERIMENTS AND ANALYSIS

We aim to address the following research questions:
(1) We investigate the effectiveness of IKER as a reward
representation. Specifically, we examine whether Iterative
Keypoint Reward can effectively represent a wide range of
reward functions necessary for training diverse manipulation

Task Annotated (Human labeled reward) Automatic (VLM-generated reward)

Simulation Real-World Simulation Real-World

IKER (Ours) Pose IKER (Ours) Pose IKER (Ours) Pose IKER (Ours) Pose

Shoe Place 0.945 0.938 0.8 0.9 0.778 0.353 0.7 0.3
Shoe Push 0.871 0.850 0.7 0.7 0.716 0.289 0.6 0.2
Stowing Push 0.901 0.914 0.8 0.7 0.679 0.374 0.6 0.3
Stowing Reorient 0.848 0.859 0.8 0.7 0.858 0.265 0.7 0.2

TABLE I: Performance of IKER in simulation and real-world. IKER, which makes use of visual keypoints, significantly
outperforms the conventional pose-based approach, especially when using VLMs to automatically generate reward functions.

skills by leveraging world knowledge from VLMs. Addition-
ally, we explore the feasibility of constructing a pipeline that
utilizes IKER for real-to-sim-to-real transfer. (2) Leveraging
task-level feedback for replanning, can the pipeline perform
multi-step tasks in dynamic environments?

A. Experimental Setup, Metrics and Baselines

Fig. 4: Setup and experiment objects. We use XArm7 to
conduct all our experiments. We use 4 stationary and 1 wrist-
mounted camera. We experiment with 5 shoe pairs and 2 shoe
racks for tasks involving shoe scenarios. We experiment with
9 different books for stowing tasks.

We conduct experiments on XArm7 with four stationary
RealSense cameras. Figure 4 shows the setup, along with
the objects used. These cameras capture the point clouds,
which are used to construct the simulation environment and
to provide data for AnyGrasp to predict grasp. Additionally,
a wrist-mounted camera is used to capture images, which are
then used to query the VLM.

We compare to a human-annotated variant of IKER, where
reward functions are human-specified, allowing evaluation
without the VLM influence. We also compare our method
with using object pose as the state representation, which is
the conventional approach in RL training [66–70]. In this
method, the VLM generates a function f that maps the initial
object poses (represented by xyz coordinates for position and
RPY angles for orientation) to their final poses. The prompt
for this baseline is discussed in Sec. B.

We evaluate our approach across four scenarios: Shoe
Place, Shoe Push, Book Push, and Book Reorient. In Shoe
Place, the robot picks up a shoe from the ground and places it
on a rack. In Shoe Push, it pushes a shoe towards other shoe
to form a matching pair. In Book Push, it pushes a book to

align with other book, or push the book towards table edge,
and in Book Reorient, it repositions a book on a shelf. Each
scenario has 10 start/end configurations. In simulation, we
report success rates averaged over 128 environments, with
trials considered successful if the average keypoint distance
to target is within 5 cm.

B. Policy Training with IKER for Single-Step Tasks

We conduct experiments comparing RL training with
keypoints and object pose. Our experiments span four rep-
resentative tasks, with results summarized in Table I.

In the annotated method, success rates for shoe placement
using IKER and object pose are 0.945 and 0.938, respec-
tively. A similar trend is observed in the shoe push, stowing
push, and reorient tasks, where performance differences are
minimal. These results suggest that IKER effectively captures
diverse behaviors, comparable to object poses, making it a
promising alternative for RL policy training.

In the automated method, IKER significantly outperforms
object pose representations. For example, in shoe placement,
IKER achieves a 0.7 success rate, while object poses reach
only 0.3. Similar results are seen across other tasks. Object
pose success is limited to simpler scenarios with no orien-
tation changes, as VLMs struggle with rotations in SO(3)
space. In contrast, keypoints simplify the challenge by re-
quiring VLMs to reason only in Cartesian space, eliminating
the need to handle object poses in SE(3) space.

As shown in Table I, there is a slight reduction in success
rate from simulation to the real world. For shoe placement,
IKER achieves success of 0.945 in simulation and 0.8 in the
real world. For shoe push, the success rate drops from 0.871
to 0.850. These results suggest that domain randomization
described in Section III-C helps the model generalize to real-
world conditions, but factors like inaccuracies in environment
reconstruction, real-world perception errors, and the inability
to simulate extreme object dynamics still affect performance.

Most of the failures in our framework stem from dis-
crepancies between the heuristic grasps used in simulation
and the grasps generated by AnyGrasp in the real world, as
well as incorrect VLM predictions. For incorrect VLM pre-
dictions, the model sometimes selects the wrong keypoints
or fails to use all available keypoints on an object when
determining its relationship to another object. For instance,
if an object has four keypoints, the VLM may only use one
of them, leading to suboptimal alignment and placement.
These issues can be mitigated by providing more in-context
examples while querying the VLMs. Furthermore, with the

Ro
bu

st
ne

ss
 T

o
Di

st
ur

ba
nc

es
Ad

ju
st

m
en

ts

To
 P

la
n

Pr
op

os
e

N
ew

Pl

an

Human: Place shoes on rack Places right shoe on rack Places left shoe on rack, little far Adjusts left shoe Task done!

Task done!Pushes book to the sideHuman: Stow book to shelf Grasps and stows book to shelfFails grasp! Replan!

Human: Place shoes on rack Places right shoe on rack Task done!Places right then left shoe on rackHuman disturbance

Fig. 5: Scenarios demonstrating capabilities of our framework. The framework is robust to disturbances and can adapt
in response to unexpected events. Additionally, it can propose new plans when the original ones become infeasible.

ongoing advancements in VLMs, we expect these challenges
will become less prominent over time. Additionally, some
failures are caused by physical dynamics when pushing
objects—at times. This issue can be partially mitigated by
configuring the simulator with more accurate physics settings
to better reflect real-world interactions.

C. Iterative Replanning for Multi-Step Tasks

Fig. 6: Multi-Step Task Chaining Comparison with Vox-
Poser. Our framework outperforms VoxPoser at every step
of the task sequence.

We demonstrate the robot’s iterative chaining ability with
a task involving three sequential actions: pushing a shoe box
to create space, then placing a pair of shoes on a rack. Failure
in any task leads to failure in the next. We test 10 different
start and end configurations, iterating through each to assess
overall performance.

We compare our method with VoxPoser [12], which
employs LLMs to generate code that produces potential
fields for motion planning. VoxPoser serves as an ideal
baseline because it excels at synthesizing motion plans for a

diverse range of manipulation tasks from free-form language
instructions. Notably, their plans are open-loop and lack
feedback to the VLM for refining specifications at each
step. To adapt it to our tasks, we enhanced VoxPoser with
two major modifications: (1) VoxPoser used OWL-ViT to
find object bounding boxes, but it struggled to distinguish
between left and right shoes, so we provided ground-truth
object locations. (2) We gave VoxPoser the entire plan, as the
original planner struggled with multi-step tasks. This gave
VoxPoser an advantage over our method due to access to
privileged information.

Figure 6 shows the iterative chaining results. Across the
three tasks, our method consistently outperformed VoxPoser.
In the first task, we succeeded 8 out of 10 times compared
to VoxPoser’s 5 successes. For the second task, we had 5
successes while VoxPoser had 1. In the final task, our method
succeeded 4 times, whereas VoxPoser failed in all attempts.
VoxPoser’s failures can be attributed to several factors, such
as pushing the shoe box either too far or not far enough,
failed grasping attempts, collisions with the environment
during object manipulation, or improper placement of the
shoes—resulting in both shoes being stacked on top of each
other and subsequently falling.

D. Robustness, Adjusting Plans, and Re-Planning

Unlike previous works that rely on open-loop plans, our
approach leverages closed-loop plans, enabling adjustments
during execution. This feature gives rise to several capabili-
ties, as demonstrated in Figure 5.

In the first scenario, a human interrupts the robot while
it is in the process of placing shoes on the ground. The
framework demonstrates resilience by recovering from the

interruption. The robot re-grasps the shoe and successfully
completes the task by placing both shoes on the rack.

In the second scenario, when the robot attempts to place
the left shoe, it detects that the shoe is not positioned close
enough to the right shoe. To address this, the VLM predicts
a corrective action, suggesting that the robot push the left
shoe closer to the right shoe to form a proper pair.

In the third scenario, the robot is tasked with stowing
a book on a shelf. However, the initial grasp attempt fails
because the book is too large to be handled effectively. In
response, the VLM predicts an alternative strategy to com-
plete the task, adjusting the approach to ensure successful
placement.

V. CONCLUSION AND LIMITATIONS

In this work, we introduced Iterative Keypoint Reward
(IKER), a framework that leverages VLMs to generate vi-
sually grounded reward functions for robotic manipulation
in open-world environments. By using keypoints from RGB-
D observations, our approach enables precise SE(3) control
and integrates priors from VLMs without relying on rigid
instructions. IKER bridges simulation and real-world exe-
cution through a real-to-sim-to-real loop, training policies in
simulation and deploying them in physical environments. Ex-
periments across diverse tasks demonstrate the framework’s
ability to handle complex, long-horizon challenges with
adaptive strategies and error recovery. This work represents
a step toward more intelligent and flexible robots capable of
operating effectively in dynamic, real-world settings.

Despite these advancements, our approach has certain
limitations. We require to capture objects from all views to
obtain object meshes. This can be simplified by using more
recent methods [71] that can generate meshes from a single
view. Additionally, our real-to-sim transfer uses a simplified
approach that may not fully capture the intricate geometries
present in real-world environments. Additionally, while our
framework reconstructs multiple objects in the environment,
our current implementation does not account for tasks in-
volving complicated multi-object interactions, limiting our
evaluation primarily to single-object manipulation at each
stage.

VI. ACKNOWLEDGEMENTS

We thank Aditya Prakash, Arjun Gupta, Binghao Huang,
Hanxiao Jiang, Kaifeng Zhang, Unnat Jain, and members of
UIUC Vision and Robotics Labs for fruitful discussions. This
work does not relate to the positions of Shubham Garg and
Hooshang Nayyeri at Amazon. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies,
either expressed or implied, of the sponsors.

REFERENCES

[1] OpenAI, “Gpt-4 technical report,” arXiv, 2023.
[2] A. Zeng, A. Wong, S. Welker, K. Choromanski, F. Tombari, A. Purohit,

M. Ryoo, V. Sindhwani, J. Lee, V. Vanhoucke et al., “Socratic models:
Composing zero-shot multimodal reasoning with language,” arXiv
preprint arXiv:2204.00598, 2022.

[3] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh,
S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger,
and I. Sutskever, “Learning transferable visual models from
natural language supervision,” 2021. [Online]. Available: https:
//arxiv.org/abs/2103.00020

[4] C. Jia, Y. Yang, Y. Xia, Y.-T. Chen, Z. Parekh, H. Pham, Q. V. Le,
Y. Sung, Z. Li, and T. Duerig, “Scaling up visual and vision-language
representation learning with noisy text supervision,” 2021. [Online].
Available: https://arxiv.org/abs/2102.05918

[5] J. Li, D. Li, C. Xiong, and S. Hoi, “Blip: Bootstrapping language-
image pre-training for unified vision-language understanding and
generation,” in International conference on machine learning. PMLR,
2022, pp. 12 888–12 900.

[6] J. Li, D. Li, S. Savarese, and S. Hoi, “Blip-2: Bootstrapping language-
image pre-training with frozen image encoders and large language
models,” 2023. [Online]. Available: https://arxiv.org/abs/2301.12597

[7] J.-B. Alayrac, J. Donahue, P. Luc, A. Miech, I. Barr, Y. Hasson,
K. Lenc, A. Mensch, K. Millican, M. Reynolds, R. Ring,
E. Rutherford, S. Cabi, T. Han, Z. Gong, S. Samangooei,
M. Monteiro, J. Menick, S. Borgeaud, A. Brock, A. Nematzadeh,
S. Sharifzadeh, M. Binkowski, R. Barreira, O. Vinyals, A. Zisserman,
and K. Simonyan, “Flamingo: a visual language model for few-shot
learning,” 2022. [Online]. Available: https://arxiv.org/abs/2204.14198

[8] J. Yu, Z. Wang, V. Vasudevan, L. Yeung, M. Seyedhosseini, and
Y. Wu, “Coca: Contrastive captioners are image-text foundation
models,” 2022. [Online]. Available: https://arxiv.org/abs/2205.01917

[9] W. Huang, C. Wang, Y. Li, R. Zhang, and L. Fei-Fei, “Rekep:
Spatio-temporal reasoning of relational keypoint constraints for robotic
manipulation,” arXiv preprint arXiv:2409.01652, 2024.

[10] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David,
C. Finn, C. Fu, K. Gopalakrishnan, K. Hausman et al., “Do as i
can, not as i say: Grounding language in robotic affordances,” arXiv
preprint arXiv:2204.01691, 2022.

[11] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence,
and A. Zeng, “Code as policies: Language model programs for
embodied control,” in arXiv preprint arXiv:2209.07753, 2022.

[12] W. Huang, C. Wang, R. Zhang, Y. Li, J. Wu, and L. Fei-Fei, “Voxposer:
Composable 3d value maps for robotic manipulation with language
models,” arXiv preprint arXiv:2307.05973, 2023.

[13] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn,
K. Gopalakrishnan, K. Hausman, A. Herzog, J. Hsu et al., “Rt-1:
Robotics transformer for real-world control at scale,” arXiv preprint
arXiv:2212.06817, 2022.

[14] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choro-
manski, T. Ding, D. Driess, A. Dubey, C. Finn et al., “Rt-2: Vision-
language-action models transfer web knowledge to robotic control,”
arXiv preprint arXiv:2307.15818, 2023.

[15] F. Liu, K. Fang, P. Abbeel, and S. Levine, “Moka: Open-vocabulary
robotic manipulation through mark-based visual prompting,” arXiv
preprint arXiv:2403.03174, 2024.

[16] H. Huang, F. Lin, Y. Hu, S. Wang, and Y. Gao, “Copa: General robotic
manipulation through spatial constraints of parts with foundation
models,” arXiv preprint arXiv:2403.08248, 2024.

[17] O. M. Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees,
S. Dasari, J. Hejna, T. Kreiman, C. Xu et al., “Octo: An open-source
generalist robot policy,” arXiv preprint arXiv:2405.12213, 2024.

[18] S. Huang, Z. Jiang, H. Dong, Y. Qiao, P. Gao, and H. Li, “Instruct2act:
Mapping multi-modality instructions to robotic actions with large
language model,” arXiv preprint arXiv:2305.11176, 2023.

[19] M. Xu, P. Huang, W. Yu, S. Liu, X. Zhang, Y. Niu, T. Zhang, F. Xia,
J. Tan, and D. Zhao, “Creative robot tool use with large language
models,” arXiv preprint arXiv:2310.13065, 2023.

[20] H. Zhou, M. Ding, W. Peng, M. Tomizuka, L. Shao, and C. Gan,
“Generalizable long-horizon manipulations with large language mod-
els,” arXiv preprint arXiv:2310.02264, 2023.

[21] S. Nasiriany, F. Xia, W. Yu, T. Xiao, J. Liang, I. Dasgupta,
A. Xie, D. Driess, A. Wahid, Z. Xu et al., “Pivot: Iterative visual
prompting elicits actionable knowledge for vlms,” arXiv preprint
arXiv:2402.07872, 2024.

[22] N. Di Palo and E. Johns, “Keypoint action tokens enable in-context
imitation learning in robotics,” arXiv preprint arXiv:2403.19578, 2024.

[23] F. Zeng, W. Gan, Y. Wang, N. Liu, and P. S. Yu, “Large language
models for robotics: A survey,” arXiv preprint arXiv:2311.07226,
2023.

https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2102.05918
https://arxiv.org/abs/2301.12597
https://arxiv.org/abs/2204.14198
https://arxiv.org/abs/2205.01917

[24] A. O’Neill, A. Rehman, A. Gupta, A. Maddukuri, A. Gupta,
A. Padalkar, A. Lee, A. Pooley, A. Gupta, A. Mandlekar et al.,
“Open x-embodiment: Robotic learning datasets and rt-x models,”
arXiv preprint arXiv:2310.08864, 2023.

[25] S. Belkhale, T. Ding, T. Xiao, P. Sermanet, Q. Vuong, J. Tompson,
Y. Chebotar, D. Dwibedi, and D. Sadigh, “Rt-h: Action hierarchies
using language,” in https://arxiv.org/abs/2403.01823, 2024.

[26] W. Zhao, J. Chen, Z. Meng, D. Mao, R. Song, and W. Zhang, “Vlmpc:
Vision-language model predictive control for robotic manipulation,” in
Robotics: Science and Systems, 2024.

[27] W. Yu, N. Gileadi, C. Fu, S. Kirmani, K.-H. Lee, M. G. Arenas, H.-
T. L. Chiang, T. Erez, L. Hasenclever, J. Humplik et al., “Language to
rewards for robotic skill synthesis,” arXiv preprint arXiv:2306.08647,
2023.

[28] Y. J. Ma, W. Liang, G. Wang, D.-A. Huang, O. Bastani, D. Jayaraman,
Y. Zhu, L. Fan, and A. Anandkumar, “Eureka: Human-level reward
design via coding large language models,” arXiv preprint arXiv: Arxiv-
2310.12931, 2023.

[29] Y. J. Ma, W. Liang, H.-J. Wang, S. Wang, Y. Zhu, L. Fan, O. Bastani,
and D. Jayaraman, “Dreureka: Language model guided sim-to-real
transfer,” 2024. [Online]. Available: https://arxiv.org/abs/2406.01967

[30] T. Xie, S. Zhao, C. H. Wu, Y. Liu, Q. Luo, V. Zhong, Y. Yang, and
T. Yu, “Text2reward: Automated dense reward function generation for
reinforcement learning,” arXiv preprint arXiv:2309.11489, 2023.

[31] D. Kappler, F. Meier, J. Issac, J. Mainprice, C. G. Cifuentes,
M. Wüthrich, V. Berenz, S. Schaal, N. Ratliff, and J. Bohg, “Real-
time perception meets reactive motion generation,” IEEE Robotics and
Automation Letters, vol. 3, no. 3, pp. 1864–1871, 2018.

[32] B. Wen, W. Lian, K. Bekris, and S. Schaal, “Catgrasp: Learning
category-level task-relevant grasping in clutter from simulation,” in
2022 International Conference on Robotics and Automation (ICRA).
IEEE, 2022, pp. 6401–6408.

[33] ——, “You only demonstrate once: Category-level manipulation from
single visual demonstration,” arXiv preprint arXiv:2201.12716, 2022.

[34] X. Huang, I. Walker, and S. Birchfield, “Occlusion-aware recon-
struction and manipulation of 3d articulated objects,” in 2012 IEEE
international conference on robotics and automation. IEEE, 2012,
pp. 1365–1371.

[35] X. Li, H. Wang, L. Yi, L. J. Guibas, A. L. Abbott, and S. Song,
“Category-level articulated object pose estimation,” in Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 3706–3715.

[36] X. Wang, B. Zhou, Y. Shi, X. Chen, Q. Zhao, and K. Xu,
“Shape2motion: Joint analysis of motion parts and attributes from 3d
shapes,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 8876–8884.

[37] J. Mu, W. Qiu, A. Kortylewski, A. Yuille, N. Vasconcelos, and
X. Wang, “A-sdf: Learning disentangled signed distance functions for
articulated shape representation,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 13 001–
13 011.

[38] Z. Jiang, C.-C. Hsu, and Y. Zhu, “Ditto: Building digital twins of
articulated objects from interaction,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp.
5616–5626.

[39] B. Wen, J. Tremblay, V. Blukis, S. Tyree, T. Muller, A. Evans, D. Fox,
J. Kautz, and S. Birchfield, “Bundlesdf: Neural 6-dof tracking and 3d
reconstruction of unknown objects,” CVPR, 2023.

[40] M. Shridhar, L. Manuelli, and D. Fox, “Cliport: What and where
pathways for robotic manipulation,” arXiv preprint arXiv: Arxiv-
2109.12098, 2021.

[41] Y. Jiang, C. Wang, R. Zhang, J. Wu, and L. Fei-Fei, “Transic:
Sim-to-real policy transfer by learning from online correction,” 2024.
[Online]. Available: https://arxiv.org/abs/2405.10315

[42] J. Gu, D. S. Chaplot, H. Su, and J. Malik, “Multi-skill mobile
manipulation for object rearrangement,” arXiv preprint arXiv: Arxiv-
2209.02778, 2022.

[43] S. Yenamandra, A. Ramachandran, K. Yadav, A. Wang, M. Khanna,
T. Gervet, T.-Y. Yang, V. Jain, A. W. Clegg, J. Turner, Z. Kira,
M. Savva, A. Chang, D. S. Chaplot, D. Batra, R. Mottaghi, Y. Bisk,
and C. Paxton, “Homerobot: Open-vocabulary mobile manipulation,”
arXiv preprint arXiv: Arxiv-2306.11565, 2023.

[44] B. Huang, Y. Chen, T. Wang, Y. Qin, Y. Yang, N. Atanasov, and
X. Wang, “Dynamic handover: Throw and catch with bimanual hands,”
arXiv preprint arXiv:2309.05655, 2023.

[45] Y. Chen, C. Wang, L. Fei-Fei, and C. K. Liu, “Sequential dexterity:
Chaining dexterous policies for long-horizon manipulation,” arXiv
preprint arXiv:2309.00987, 2023.

[46] Y. Qin, B. Huang, Z.-H. Yin, H. Su, and X. Wang, “Dexpoint:
Generalizable point cloud reinforcement learning for sim-to-
real dexterous manipulation,” 2022. [Online]. Available: https:
//arxiv.org/abs/2211.09423

[47] A. Kumar, Z. Fu, D. Pathak, and J. Malik, “RMA: rapid
motor adaptation for legged robots,” in Robotics: Science and
Systems XVII, Virtual Event, July 12-16, 2021, D. A. Shell,
M. Toussaint, and M. A. Hsieh, Eds., 2021. [Online]. Available:
https://doi.org/10.15607/RSS.2021.XVII.011

[48] T. He, C. Zhang, W. Xiao, G. He, C. Liu, and G. Shi, “Agile but
safe: Learning collision-free high-speed legged locomotion,” 2024.
[Online]. Available: https://arxiv.org/abs/2401.17583

[49] K. J. Åström and P. Eykhoff, “System identification—a survey,”
Automatica, vol. 7, no. 2, pp. 123–162, 1971.

[50] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bo-
hez, and V. Vanhoucke, “Sim-to-real: Learning agile locomotion for
quadruped robots,” arXiv preprint arXiv: Arxiv-1804.10332, 2018.

[51] P. Chang and T. Padir, “Sim2real2sim: Bridging the gap between
simulation and real-world in flexible object manipulation,” arXiv
preprint arXiv: Arxiv-2002.02538, 2020.

[52] V. Lim, H. Huang, L. Y. Chen, J. Wang, J. Ichnowski, D. Seita,
M. Laskey, and K. Goldberg, “Planar robot casting with real2sim2real
self-supervised learning,” arXiv preprint arXiv: Arxiv-2111.04814,
2021.

[53] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakrish-
nan, L. Downs, J. Ibarz, P. Pastor, K. Konolige et al., “Using simulation
and domain adaptation to improve efficiency of deep robotic grasping,”
in 2018 IEEE international conference on robotics and automation
(ICRA). IEEE, 2018, pp. 4243–4250.

[54] K. Arndt, M. Hazara, A. Ghadirzadeh, and V. Kyrki, “Meta
reinforcement learning for sim-to-real domain adaptation,” 2019.
[Online]. Available: https://arxiv.org/abs/1909.12906

[55] K. Rao, C. Harris, A. Irpan, S. Levine, J. Ibarz, and M. Khansari,
“Rl-cyclegan: Reinforcement learning aware simulation-to-real,” 2020.
[Online]. Available: https://arxiv.org/abs/2006.09001

[56] OpenAI, I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin,
B. McGrew, A. Petron, A. Paino, M. Plappert, G. Powell, R. Ribas,
J. Schneider, N. Tezak, J. Tworek, P. Welinder, L. Weng, Q. Yuan,
W. Zaremba, and L. Zhang, “Solving rubik’s cube with a robot hand,”
arXiv preprint arXiv: Arxiv-1910.07113, 2019.

[57] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in 2017 IEEE/RSJ international con-
ference on intelligent robots and systems (IROS). IEEE, 2017, pp.
23–30.

[58] R. Antonova, F. Ramos, R. Possas, and D. Fox, “Bayessimig: Scalable
parameter inference for adaptive domain randomization with isaac-
gym,” arXiv preprint arXiv:2107.04527, 2021.

[59] M. Torne, A. Simeonov, Z. Li, A. Chan, T. Chen, A. Gupta,
and P. Agrawal, “Reconciling reality through simulation: A real-
to-sim-to-real approach for robust manipulation,” arXiv preprint
arXiv:2403.03949, 2024.

[60] B. Wen, W. Yang, J. Kautz, and S. Birchfield, “Foundationpose:
Unified 6d pose estimation and tracking of novel objects,” arXiv
preprint arXiv:2312.08344, 2023.

[61] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Mack-
lin, D. Hoeller, N. Rudin, A. Allshire, A. Handa, and G. State,
“Isaac gym: High performance gpu-based physics simulation for robot
learning,” 2021.

[62] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[63] V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” Advances in
neural information processing systems, vol. 12, 1999.

[64] D.-A. Clevert, “Fast and accurate deep network learning by exponen-
tial linear units (elus),” arXiv preprint arXiv:1511.07289, 2015.

[65] H.-S. Fang, C. Wang, H. Fang, M. Gou, J. Liu, H. Yan, W. Liu, Y. Xie,
and C. Lu, “Anygrasp: Robust and efficient grasp perception in spatial
and temporal domains,” IEEE Transactions on Robotics, 2023.

[66] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learn-
ing for robotic manipulation with asynchronous off-policy updates,”

https://arxiv.org/abs/2406.01967
https://arxiv.org/abs/2405.10315
https://arxiv.org/abs/2211.09423
https://arxiv.org/abs/2211.09423
https://doi.org/10.15607/RSS.2021.XVII.011
https://arxiv.org/abs/2401.17583
https://arxiv.org/abs/1909.12906
https://arxiv.org/abs/2006.09001

in 2017 IEEE international conference on robotics and automation
(ICRA). IEEE, 2017, pp. 3389–3396.

[67] I. Popov, N. Heess, T. Lillicrap, R. Hafner, G. Barth-Maron, M. Ve-
cerik, T. Lampe, Y. Tassa, T. Erez, and M. Riedmiller, “Data-
efficient deep reinforcement learning for dexterous manipulation,”
arXiv preprint arXiv:1704.03073, 2017.

[68] M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot,
N. Heess, T. Rothörl, T. Lampe, and M. Riedmiller, “Leveraging
demonstrations for deep reinforcement learning on robotics problems
with sparse rewards,” arXiv preprint arXiv:1707.08817, 2017.

[69] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman,
E. Todorov, and S. Levine, “Learning complex dexterous manipulation
with deep reinforcement learning and demonstrations,” arXiv preprint
arXiv:1709.10087, 2017.

[70] H. Qi, A. Kumar, R. Calandra, Y. Ma, and J. Malik, “In-hand object
rotation via rapid motor adaptation,” in Conference on Robot Learning.
PMLR, 2023, pp. 1722–1732.

[71] R. Liu, R. Wu, B. Van Hoorick, P. Tokmakov, S. Zakharov, and
C. Vondrick, “Zero-1-to-3: Zero-shot one image to 3d object,” in
Proceedings of the IEEE/CVF international conference on computer
vision, 2023, pp. 9298–9309.

APPENDIX

A. Grasping Subroutine

During training, the gripper’s fingers remain closed by
default and only open during the grasp mode. In this mode,
the end-effector approaches the object with its fingers open
and then closes to grasp the object. A similar behavior is
maintained in real-world: the fingers remain closed until the
grasp mode is activated. In this mode, AnyGrasp predicts a
suitable grasp pose, and the fingers close at the determined
position. To address the sim-to-real gap, we add random-
ization to the heuristic grasp pose during simulation. This
allows the policy to generalize more effectively, resulting in
more robust and reliable grasps in the real-world.

B. VLM Prompts

The VLM receives the image overlaid with keypoints
1, . . . ,K, along with the task description as text. These are
given to the VLM, along with the prompt. We do not provide
any in-context examples with the prompt. Our prompt for
single-step tasks is as follows:

Instructions
Your job is to help with moving rigid objects in real-
world by writing code in python.
The task is given as an image of the environment,
overlayed with keypoints marked with their indices, along
with a text instruction.
These keypoints are in 3D space, and are projected onto
the 2D image. They are attached with the objects, and move
along with them.
So to determine where a specific point should go, you
should specify where its corresponding keypoint should go.
The coordinate system is marked at the bottom right in the
image, with a vertical arrow pointing forward in the
positive x direction and the horizontal arrow pointing to
the left in the positive y direction.
The code should predict the final keypoint locations
relative to their matching keypoints. Use all matching
keypoints to determine the final position of the moving
object, not just a single reference point.
Note:
- You should determine if you need to grasp or push the
object. You should output a boolean grasp_mode for that.
- Some objects should not be moved. Hence, the final
location of key points on them should be the same as the
initial locations.
- If you need to interact with an object, the final
location of only the keypoints marked on it should change.
Hence, you should first try to understand which object
should move.
- You should try to understand where the moving object
should go relative to other stationary objects and use all
the matching keypoints for alignment. Then you can give
the final locations of keypoints of moving objects
relative to keypoints on stationary objects.
- Positive x direction points towards up and positive y
direction points towards left.
- The input to the function is a dictionary of keypoint
coordinates. So keys will be strings like "1", "2", ...
and their values will be numpy arrays ([x, y, z])
representing the 3D location of the keypoint corresponding
to that index.
- To represent coordinates relative to other keypoints,
you can make predictions like:
keypoint_coordinates[’1’] = keypoint_coordinates[’2’] +
np.array([delta_x, delta_y, delta_z]).
For instance, if keypoint 1 needs to be placed to the
left of keypoint 2, then delta_x = 0, delta_y = 0.1, and
delta_z = 0.
So can predict keypoint_coordinates[’1’] =
keypoint_coordinates[’2’] + np.array([0, 0.1, 0]).
The units here are in meters and left direction
corresponds to + y-axis.

- Make use of semantics. Some objects should be placed in
a certain way, like a left shoe should be placed on the
left of the right shoe.

Structure your output in a single python code block as
follows:

def get_interaction_data(keypoint_coordinates):
""" Put your explanation here. """
object_to_interact = ?
keypoint_indices_to_interact = ?
grasp_mode = ?
final keypoint calculation for each keypoint in
keypoint_indices_to_interact
keypoint_coordinates[‘keypoint_indices_to_interact
[0]‘] = ? # Write calculation here. You may use
multiple lines
Repeat for other keypoints
return object_to_interact,
keypoint_indices_to_interact, grasp_mode,
keypoint_coordinates

Query
Query Task: ’[TASK]’
Query Image: [IMAGE_WITH_KEYPOINTS]

The prompt for multi-stage tasks is as follows:

Instructions
Your job is to help with moving rigid objects in real-
world by writing code in python.
The task is given as an image of the environment,
overlayed with keypoints marked with their indices, along
with a text instruction.
These keypoints are in 3D space, and are projected onto
the 2D image. They are attached with the objects, and move
along with them.
So to determine where a specific point should go, you
should specify where its corresponding keypoint should go.
The coordinate system is marked at the bottom right in the
image, with a vertical arrow pointing forward in the
positive x direction and the horizontal arrow pointing to
the left in the positive y direction.
The code should predict the final keypoint locations
relative to their matching keypoints. Use all matching
keypoints to determine the final position of the moving
object, not just a single reference point.
Note:
- You should determine if you need to grasp or push the
object. You should output a boolean grasp_mode for that.
- Some objects should not be moved. Hence, the final
location of key points on them should be the same as the
initial locations.
- If you need to interact with an object, the final
location of only the keypoints marked on it should change.
Hence, you should first try to understand which object
should move.

- You should try to understand where the moving object
should go relative to other stationary objects and use all
the matching keypoints for alignment.
Then you can give the final locations of keypoints of
moving objects relative to keypoints on stationary
objects.

- Positive x direction points towards up and positive y
direction points towards left.
- The input to the function is a dictionary of keypoint
coordinates. So keys will be strings like "1", "2", ...
and their values will be numpy arrays ([x, y, z])
representing the 3D location of the keypoint corresponding
to that index.
- To represent coordinates relative to other keypoints,
you can make predictions like:
keypoint_coordinates[’1’] = keypoint_coordinates[’2’] +
np.array([delta_x, delta_y, delta_z]).
For instance, if the keypoint 1 needs to be placed to
the left of keypoint 2, then delta_x = 0, delta_y = 0.1,
and delta_z = 0.
So can predict keypoint_coordinates[’1’] =
keypoint_coordinates[’2’] + np.array([0, 0.1, 0]).
The units here are in meters and left direction
corresponds to + y-axis.

- Make use of semantics. Some objects should be placed in
a certain way, like a left shoe should be placed on the
left of the right shoe.

- Some tasks involve multiple stages, so you will also
predict the overall plan. Then you will write the
description and code for the current stage. You will
interact with only one object in a stage. Placing or
pushing a single object will be considered a single stage.
Grasping is not considered as a separate stage.
- You are free to make minor changes to the plan, or
change the plan altogether if you think is necessary.
- We will keep adding the previous states of the
environment as images and the corresponding code to the
description. This will show how the task progressed. At
the start, you will only see the task description.
- You should predict done=True when the task is complete,
otherwise False. Only predict done=True when you see that
the task is completed.

Structure your output in a single python code block as
follows:

def get_interaction_data(keypoint_coordinates):
"""

Previous Plan Description
Current Plan Description
Current stage description

"""
done = ?
if done:

return
object_to_interact = ?
keypoint_indices_to_interact = ?
grasp_mode = ?
final keypoint calculation for each keypoint in
keypoint_indices_to_interact
keypoint_coordinates[’keypoint_indices_to_interact
[0]’] = ? # Write calculation here. You may use
multiple lines
Repeat for other keypoints
return object_to_interact,
keypoint_indices_to_interact, grasp_mode,
keypoint_coordinates

Query
Query Task: ’[TASK]’
Query Image: [IMAGE_WITH_KEYPOINTS]

The prompt for baseline using pose input is as follows:
Instructions
Your job is to help with moving rigid objects in a real-
world environment by writing code in Python.
The task is given as an image of the environment, along
with text instructions.
The coordinate system is marked at the bottom right in the
image, with a vertical arrow pointing forward in the
positive x direction and the horizontal arrow pointing to
the left in the positive y direction.
The objects are treated as rigid bodies and are labeled
with numbers. You need to predict the final pose of the
moving object relative to the pose of any object. It can
be its own pose or pose of other objects in the image.
Note:
- You should determine if you need to grasp or push the
object. You should output a boolean grasp_mode for that.
- Some objects should not be moved. Hence, the final pose
of those objects will be the same as the initial pose.
- If you need to interact with an object, the final pose
of that object should change.
- You should first try to understand which object should
move relative to its pose, or poses of the other objects.
Then you can give the final pose of the moving object
relative to the other object poses.
- Positive x direction points upwards, and positive y
direction points to the left.
- The input to the function is a dictionary of object
poses. So the keys will be strings representing object
labels like "1", "2", ..., and their values will be numpy
arrays [x, y, z, r, p, y], where x, y, z represent the
position in meters and r, p, y represent the orientation
in radians.
- To represent poses relative to other objects, you can
make predictions like: object_poses[’1’] = object_poses
[’2’] + np.array([delta_x, delta_y, delta_z, delta_r,
delta_p, delta_yaw]). For instance, if object 1 needs to
be placed to the left of object 2, then: delta_x = 0,
delta_y = 0.1, delta_z = 0, delta_r = 0, delta_p = 0,

delta_yaw = 0. So, you can predict: object_poses[’1’] =
object_poses[’2’] + np.array([0, 0.1, 0, 0, 0, 0]). The
units for positions are in meters, and for orientations,
they are in radians. The left direction corresponds to the
positive y-axis.
- Make use of semantics. Some objects should be placed in
a certain way, like a left shoe should be placed on the
left of the right shoe.
Structure your output in a single Python code block as
follows:

def get_final_poses(object_poses):
""" Put your explanation here. """
object_to_interact = ?
grasp_mode = ?
final pose calculation for each object
object_poses[‘object_to_interact‘] = ? # Write
calculation here. You may use multiple lines
return object_to_interact, grasp_mode, object_poses

Query
Query Task: ’[TASK]’
Query Image: [IMAGE]

C. Case study of a complex task

Human: Stow the book to shelf Place book on fixture for regrasp

Grasp longer side and stow book Human: Place it to other shelf

Fig. 7: Case study of a complex task

We present results on a complex 3D understanding task.
The task involves stowing a book on a shelf, where the book
is initially positioned with only its shorter edge graspable.
The instruction is to place the book on the shelf. However,
the robot cannot place the book directly with the shorter edge
grasped, as this would result in a collision between the book
and the table due to the position of its arm. To complete this
task, the robot must perform multiple steps: first, it needs to
regrasp the book along its longer edge using some part of
the environment, and only then can it stow the book on the
shelf. After the robot places the book on the initial shelf, a
human intervenes by adding an instruction to move the book
to a different shelf.

Given the complexity of this long-horizon task, we employ
in-context examples to guide the VLM. With this change,
our system is able to successfully perform the task. Figure 7
illustrates the progression of the task.

	Introduction
	Related Work
	Method
	Iterative Keypoint Reward (IKER)
	Transferring real-world scene to simulation
	Train policy in Simulation
	Deploy Trained Policy in Real-World

	Experiments and Analysis
	Experimental Setup, Metrics and Baselines
	Policy Training with IKER for Single-Step Tasks
	Iterative Replanning for Multi-Step Tasks
	Robustness, Adjusting Plans, and Re-Planning

	Conclusion and Limitations
	Acknowledgements
	References
	Appendix
	Grasping Subroutine
	VLM Prompts
	Case study of a complex task

